Space Wrench
 Abena Boadi-Agyemang

ME 127
Winter 2021

Design a printable wrench to tighten a fastener that is partially blocked by an access panel

Problem Statement

Ideation

- Separate lhandlle with threads

But,

- Issues with threads can lead to mechanical failure

Concept Sketches

- Single body with filleted corners
to reduce stress concentrations
- Filleted body also improves usability and aesthetics

Concept Sketches

Head \& Handle

- Eirgonomic lhandile for ease of use
- Tapered head and body to improve mass efficiency

Concept Sketches

Design Iterations

- Thickness of wrench is 0.22 " to match nut height

But,

- Lack of ergonomic form
- Arbittrary dimensioning
- No tolerance

First Iteration

Ergonomics

Hand span when gripping:
Handle length:

- Length and width of handle to comfortably fit hand
- Medium handle length to minimize overhang

Ergonomics

"Length of head is 1.442 " and vertical height is 1.450 " to avoid interference with the test rig

Dimensions

' Fabrication clearance of $\mathbf{0 . 0 0 5}$ "

- Additional tolerance of 0.015"
- Total tolerance: 0.020"

Tolerance

- Ergonomic handle
- Well dimensioned

But,

- Aesthetic extrusion on handle diminishes comfortable use
- Inconsistent chamfer

Second Iteration

Final Design

Functionality

Steps

\checkmark Insert with wrench head vertical (facing ground)
\checkmark Once in test rig, rotate wrench through $\mathbf{~ 9 0}^{\circ}$
\checkmark Take out and repeat

One full rotation is \sim turns

Functionality

Material Analysis \& Printability

PLA

Good because:

- Has medium impact strength
- Has medium stifffness
benefitting the space wrench design because:
- Resists mechanical failure
- Able to withstand sufficient torque

Material Analysis

[^0]
ABS

- Higher tensile strength
- Higher impact resistance
therefore, it would be a better material because:
- Greater resistance against mechanical failure
- Able to withstand higher torque
- Good for functional prototypes

Alternative Material

Printability

Final Product

Reflection

I approached the problem with a keen focus on usability during the first iteration of my designs. As a result, I honed in on features (such as the form of the handle) that would improve the user experience. In the process, I neglected to focus on key aspects that would be integral to the functionality, such as the wrench's dimensions.

In subsequent iterations, I began making revisions to improve functionality and leverage the capabilities of additive manufacturing. In the process, I relied upon mechanical design concepts. I applied heuristics about the locations of high stress concentrations, such as corners, and added fillets. Additionally, I minimized the surface area to improve the overall mass efficiency of my wrench. Furthermore, I oriented my part to leverage support and adhesion types that would strengthen $m y$ wrench during build.

Throughout this process, I learned the importance of integrating my technical and analytical intuitions into my human-centered design process - the two processes should work in tandem to create robust, user-centered final products. This is a lesson I aim to strengthen throughout my engineering career.

- Sketching + Cataloguing : $\mathbf{1 . 5} \mathbf{h r}$
- CAD: 5hrs
- Documentation: 5 hrs

Total time spent was 11.5 hours

Process Reflection

One of my primary focuses was ensuring that my wrench was handle ergonomic. The orientation of the handle delivered a pleasant user experience as it was easy to apply torque without having to orient my hand in an awkward position. Further wrench iterations would have included a handle with rounded edges for increased usability. Additionally, the application of torque was sufficient to turn the nut. However, because of a failure to leave enough clearance at the interface between the vertical segment of the wrench body and the curved inner surface of the test rig, it was challenging to re-position the wrench head in order to tighten the nut. This resulted in it taking a longer time for me to tighten the nut (as evidenced in my demonstration video). This was a lesson to ALWAYS ensure you have enough clearance! :)

Product Reflection

[^0]: - Source: imakr.com

